If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x+10=30
We move all terms to the left:
4x^2+5x+10-(30)=0
We add all the numbers together, and all the variables
4x^2+5x-20=0
a = 4; b = 5; c = -20;
Δ = b2-4ac
Δ = 52-4·4·(-20)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{345}}{2*4}=\frac{-5-\sqrt{345}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{345}}{2*4}=\frac{-5+\sqrt{345}}{8} $
| 2(3x+1)-4(x+3)=8 | | 4y-3=7y+21 | | )=7r+58 | | x^2(2^x)-2^x(16)=0 | | |x-2|=4x+4 | | 17m-14m-m=18 | | 1x+24=2x+4 | | (z+8)^2=-64 | | 3(5x-6)+5(2x+3)=22 | | 4/7x-3=11/7x | | 5x-3(x-5)=-2+4x+13 | | X÷2=5+x÷3 | | 2-2w=L | | 3/4m+6=5 | | 10(z+1)-2(z-3)=3(z-1)+4(z-1) | | 3÷2x+1=5-2x | | −5x^2+16x=0 | | 2y=1/6 | | 11(z+3)-4(z-2)=4(z-3)+2(z-1) | | x2+1=5x2−11 | | x/3-19=0 | | 11(z+4)-4(z-3)=4(z-3)+2(z-4) | | 4x-3/7=6/7 | | 3(180-x)+300=17 | | 3x(11-7x=) | | 4k+8=k+6 | | 4x-12=8x-11 | | 17-4c=3 | | 6x+7÷3=9x+3÷7 | | 3(5-x)-2(5+x)=3(x-1) | | -12÷y=-8÷6 | | 25-(2c+4)=2(c+3)+3 |